Reducing Water Loss in
Community Water Systems
-NH’s Leak Detection Contract-

Derek Bennett
NHDES - Drinking Water & Groundwater Bureau

NH Water & Watersheds Conference
March 23, 2012
What is leak Detection

- **Visual Inspection**
 - Wet spots on the ground
 - Most leaks don’t surface

- **Audible Inspection**
 - Sound water creates as it leaves a restricted opening
 - Sound of escaping water hitting the surrounding soil
 - Sound resonates along the pipe wall
 - Determine if sound is near or far and pinpoint the leak
Why Leak Detection

- Inflated production costs
- Stressed water supplies & infrastructure
- Stress to environment
- No beneficial end use
- No revenue
- Example to customers
Project Timeline

- **Project Requests**
 - 04/2009 Sent request for projects to all systems
 - 05/2009 Project requests due
 - 06/2009 Deadline extended

- **Proposals**
 - 07/2009 Posted RFP for Leak Consultants
 - 09/2009 Proposals due
 - 10/2009 Contractor selected by review panel

- **Contract**
 - 11/2009 Contract signed by consultant
 - 01/2010 Signed by Governor & Executive Council

- **Surveys**
 - 04/2010 First survey day
 - 09/2011 Last survey day
Project Requests
What did we ask for?

- Requested
 - Breakdown of pipe materials and age
 - Dates that survey may occur
 - Proposed repair schedule
 - Date & Results of most recent survey (if known)
 - Most recent water audit (if available)

- Ranked
 - Readiness to proceed
 - Potential water savings of project
 - Benefit to water system as a result of overall demand reduction
 - Demonstration that the water system will repair water system leaks identified by the third-party contractor in a timely manner
Summary of Project Requests

- 27 Water Systems (568 miles) submitted requests
 - 200K could adequately cover surveys
 - Ranking not required
- 16 complete surveys (100% of the system)
 - 422 miles
- 11 partial surveys (10-62%)
 - 146 miles
Request For Proposals

- **Requested**
 - Cost and time breakdown for each project
 - A summary of the three most recently completed leak detection surveys
 - Technical qualifications and training received for each staff member
 - Description of the equipment that the company will use to perform the surveys

- **Ranked**
 - Total cost of projects
 - Time to complete
 - Experience
Ten Proposals

- American leak Detection Services - Newbury, MA
- DSM Solutions – Marcellus, NY
- EJ Prescott – Pembroke, NH
- Granite State Rural Water – Penacook, NH
- Heath Consultants – Greenburg, PA
- Prowler Water Conservation – Leicester, MA
- Sarian Company – Sandwich, MA
- Troupe Water Services – Exeter, NH
- Water & Waste Pipe Testing Inc Rowley, MA
- Water Systems Optimization, Nashville, TN
Cost Per Mile / Survey Rate

<table>
<thead>
<tr>
<th>Total</th>
<th>Per Mile</th>
<th>Days</th>
<th>Miles Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>$43,688</td>
<td>$72.60</td>
<td>146</td>
<td>4.11</td>
</tr>
<tr>
<td>$51,112</td>
<td>$84.94</td>
<td>82</td>
<td>7.32</td>
</tr>
<tr>
<td>$82,407</td>
<td>$84.94</td>
<td>120</td>
<td>5.01</td>
</tr>
<tr>
<td>$82,750</td>
<td>$137.52</td>
<td>09/30/11</td>
<td>-</td>
</tr>
<tr>
<td>$109,625</td>
<td>$182.18</td>
<td>172</td>
<td>3.49</td>
</tr>
<tr>
<td>>$114,430</td>
<td>>$190.16</td>
<td>>143</td>
<td>4.20</td>
</tr>
<tr>
<td>$155,350</td>
<td>$258.17</td>
<td>09/30/11</td>
<td>-</td>
</tr>
<tr>
<td>$172,116</td>
<td>$286.03</td>
<td>09/30/11</td>
<td>-</td>
</tr>
<tr>
<td>>$228.877</td>
<td>>$380.36</td>
<td>>180</td>
<td>3.34</td>
</tr>
<tr>
<td>$252,093</td>
<td>$418.94</td>
<td>447</td>
<td>1.34</td>
</tr>
<tr>
<td>Total</td>
<td>Per Mile</td>
<td>Days</td>
<td>Miles Per Day</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td>$43,688</td>
<td>$72.60</td>
<td>146</td>
<td>4.11</td>
</tr>
<tr>
<td>$51,112</td>
<td>$84.94</td>
<td>82</td>
<td>7.32</td>
</tr>
<tr>
<td>$82,407</td>
<td>$84.94</td>
<td>120</td>
<td>5.01</td>
</tr>
<tr>
<td>$82,750</td>
<td>$137.52</td>
<td>09/30/11</td>
<td>-</td>
</tr>
<tr>
<td>$109,625</td>
<td>$182.18</td>
<td>172</td>
<td>3.49</td>
</tr>
<tr>
<td>>$114,430</td>
<td>>$190.16</td>
<td>>143</td>
<td>4.20</td>
</tr>
<tr>
<td>$155,350</td>
<td>$258.17</td>
<td>09/30/11</td>
<td>-</td>
</tr>
<tr>
<td>$172,116</td>
<td>$286.03</td>
<td>09/30/11</td>
<td>-</td>
</tr>
<tr>
<td>>$228,877</td>
<td>>$380.36</td>
<td>>180</td>
<td>3.34</td>
</tr>
<tr>
<td>$252,093</td>
<td>$418.94</td>
<td>447</td>
<td>1.34</td>
</tr>
</tbody>
</table>
Contract Language

- **Initial Survey**
 - Contact points: Gate valves, hydrants, meter/curb valves, and blow-off’s
 - Ground microphone: large main, non-metal pipe, excessive distance
 - Resonance plate with ground mic where main more than three feet off hard surface.

- **Pinpointing Phase**
 - Confirm locations of mains & services
 - Intensified pattern of sonic tests over pipe
 - Digital correlator as necessary

- **Leak Report**
 - Classified by size, source, location
 - Frequency of report updates
 - Final report
Sound Travel Distance

- 2 GPM Leak at 60 PSI
 - 6 inch CI Pipe 600 to 1000 feet
 - 12 inch CI Pipe 400 to 800 feet
 - 6 inch AC Pipe 400 to 800 feet
 - 12 inch AC Pipe 300 to 500 feet
 - 6 inch PVC Pipe 200 to 300 feet
 - 12 inch PVC Pipe 100 to 200 feet

http://www.subsurfaceleak.com/find_leaks.html
Hydrant to Hydrant Not Enough
Source of Leaks

<table>
<thead>
<tr>
<th>Source of Leakage</th>
<th>Number</th>
<th>GPM</th>
<th>% of Total No.</th>
<th>% of Total Est. GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mains</td>
<td>4</td>
<td>80</td>
<td>23</td>
<td>54</td>
</tr>
<tr>
<td>Services</td>
<td>8</td>
<td>53</td>
<td>47</td>
<td>35</td>
</tr>
<tr>
<td>Valves</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Hydrants</td>
<td>4</td>
<td>6</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>TOTALS</td>
<td>17</td>
<td>149</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Estimated Leaks

<table>
<thead>
<tr>
<th>Classification</th>
<th>Number</th>
<th>GPM</th>
<th>GPD</th>
<th>GPY</th>
<th>AF/Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>70</td>
<td>100,800</td>
<td>36,792,000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>63</td>
<td>90,720</td>
<td>33,112,800</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>16</td>
<td>23,040</td>
<td>8,409,600</td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td>17</td>
<td>149</td>
<td>214,560</td>
<td>78,314,400</td>
<td></td>
</tr>
</tbody>
</table>

Leak Occurrence by Type

- 123 leaks located
 - Mains 30
 - Services 52
 - Valves 18
 - Hydrants 28
- How many others?
Total Loss by Leak Type

- 841 GPM
- 1,200,000 GPD
- 442,000,000 GPY
- Services 397 gpm
- Mains 378 gpm
- Valves 28 gpm
- Hydrants 38 gpm

Pie chart showing:
- Main 45%
- Service 47%
- Valve 3%
- Hydrant 5%
Leak Occurrence by Size

Classification

- Type 1 (15+ GPM): 12
- Type 2 (5-15 GPM): 49
- Type 3 (<5 GPM): 62
Size of Leak & Response Time

LARGE LEAKS

- **Flow Rate**
 - Awareness
 - Location
 - Repair

SMALL LEAKS

- **Flow Rate**
 - Awareness
 - Location
 - Repair
Automate Leak Identification

DAILY MINIMUMS

GPM

DAY

- PS1Z1
- PS1Z2
- PS3
- PS5
- PS6
- PS7
Leak Database

- Leak Identification
 - Location of Break
 - Date Found
 - Reported By
 - Type of Leak
 - Estimated Loss Rate

- Leak Repair
 - Possible Cause
 - Pipe Material
 - Pipe Diameter
 - Average pressure
 - Failure Type
 - Possible Cause
 - Date Repaired

Frequent sweeps
Data Loggers
Pressure Reduction
Main Replacement
Summary of Survey Results

- 123 leaks identified over 568 miles
 - 1 leak per 4.6 miles surveyed
- Approximately 841 gpm
 - 442 million gallons per year
 - .78 million gallons per mile per year
 - 1.5 gpm per mile average
- Approximately 841 gpm for $110,000
 - $131 per gpm located
Conclusions

- Going rate: $200 per mile (4 miles per day)
- Accurate maps are essential
 - Locate lines ahead of time
 - Locate / clean out / maintain curb valves
- Almost half of all leaks were on services
 - Have good policy for responsibility
- Cumulatively, small leaks over the long term can lose as much water (and revenue) as large leaks
- Accurate data on leak type and location can help prioritize areas for replacement / enhanced detection
<table>
<thead>
<tr>
<th>MILES</th>
<th>LOSS RATE</th>
<th>GPM / MILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.52</td>
<td>5.00</td>
<td>9.62</td>
</tr>
<tr>
<td>18.26</td>
<td>84.00</td>
<td>4.60</td>
</tr>
<tr>
<td>9.23</td>
<td>30.00</td>
<td>3.25</td>
</tr>
<tr>
<td>18.11</td>
<td>50.00</td>
<td>2.76</td>
</tr>
<tr>
<td>18.03</td>
<td>47.00</td>
<td>2.61</td>
</tr>
<tr>
<td>3.21</td>
<td>7.80</td>
<td>2.43</td>
</tr>
<tr>
<td>105.24</td>
<td>246.00</td>
<td>2.34</td>
</tr>
<tr>
<td>2.50</td>
<td>5.00</td>
<td>2.00</td>
</tr>
<tr>
<td>5.87</td>
<td>11.00</td>
<td>1.87</td>
</tr>
<tr>
<td>3.00</td>
<td>5.00</td>
<td>1.67</td>
</tr>
<tr>
<td>15.24</td>
<td>24.00</td>
<td>1.57</td>
</tr>
<tr>
<td>17.32</td>
<td>26.00</td>
<td>1.50</td>
</tr>
<tr>
<td>35.02</td>
<td>50.00</td>
<td>1.43</td>
</tr>
<tr>
<td>123.06</td>
<td>149.00</td>
<td>1.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MILES</th>
<th>LOSS RATE</th>
<th>GPM / MILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.25</td>
<td>20.00</td>
<td>1.10</td>
</tr>
<tr>
<td>50.00</td>
<td>52.00</td>
<td>1.04</td>
</tr>
<tr>
<td>30.70</td>
<td>16.00</td>
<td>0.52</td>
</tr>
<tr>
<td>2.00</td>
<td>1.00</td>
<td>0.50</td>
</tr>
<tr>
<td>20.40</td>
<td>10.00</td>
<td>0.49</td>
</tr>
<tr>
<td>10.51</td>
<td>1.00</td>
<td>0.10</td>
</tr>
<tr>
<td>15.00</td>
<td>1.00</td>
<td>0.07</td>
</tr>
<tr>
<td>0.25</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2.50</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1.40</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8.36</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>34.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>568.28</td>
<td>840.8</td>
<td>1.48</td>
</tr>
<tr>
<td>Category</td>
<td>Value</td>
<td>Percentage</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Authorized Consumption</td>
<td>680.1</td>
<td></td>
</tr>
<tr>
<td>Billed Authorized</td>
<td>646.8</td>
<td></td>
</tr>
<tr>
<td>Billed Unmetered</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Unbilled Authorized</td>
<td>33.3</td>
<td></td>
</tr>
<tr>
<td>Unbilled Metered</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>Unbilled Unmetered</td>
<td>22.0</td>
<td></td>
</tr>
<tr>
<td>Apparent Losses</td>
<td>25.2</td>
<td></td>
</tr>
<tr>
<td>Theft</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>Metering Inaccuracy</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td>Real Losses</td>
<td>198.6</td>
<td></td>
</tr>
<tr>
<td>Main Leakage</td>
<td>52.4 Identified</td>
<td></td>
</tr>
<tr>
<td>Overflow</td>
<td>.028 Identified</td>
<td></td>
</tr>
<tr>
<td>Service Leakage</td>
<td>26.8 Identified</td>
<td></td>
</tr>
<tr>
<td>Revenue Water</td>
<td>646.8 (72%)</td>
<td></td>
</tr>
<tr>
<td>Non Revenue Water</td>
<td>257 (28%)</td>
<td></td>
</tr>
<tr>
<td>Reduced to</td>
<td>177.8 (19.6%)</td>
<td></td>
</tr>
</tbody>
</table>
Find the Economic Level of Loss

- Capacity
- Existing Loss Level
- Economic Loss Level
- Unavoidable Level
- Consumption

Years

Total Demand
Leakage targets

Leak location

Repair times

New technology

Zonal / area monitoring

Pressure Management

Mains rehabilitation

Performance monitoring and data management
Financing & Funding Energy Efficiency Improvements

- Core Electric Utility Programs
 - Mark Toussaint, Public Service of New Hampshire
- PUC REF & GHGERF
 - Kate Epsen, Public Utilities Commission
- Pay for Performance Program
 - Tom Rooney, TRC Solutions
- Power Purchase Agreements
 - Clay Mitchell, Revolution Energy
- Performance Contracting
 - Ned Raynolds, Johnson Controls
- Water System Example
 - To Be Determined
- WWTF Example
 - To Be Determined

May 22, 2012
PSNH Headquarters
Manchester, NH
Leak Occurrence by Material