Watershed Scale Crossing Assessment to Promote Community Restoration Priorities

Dianne Timmins - NH Fish and Game Dept Rachelle Lyons - PSU Center for Business and Community Partnerships

ARSCAP Team

Rachelle Lyons Plymouth State University **Project Manager** rllyons@plymouth.edu

Center for Business & Community Partnerships

Dianne Timmins NH Fish and Game Data Manager dianne.timmins@wildlife.nh.gov

Trout Unlimited National

Colin Lawson **Project Supervisor** clawson@tu.org

Art Greene Ammonoosuc Chapter Trout Unlimited Volunteer Coordinator afgreene@roadrunner.com

Tara Bamford Senior Community Planner tbamford@ncc.org

Presentation Overview

- Modeling AOP, Geomorphic Compatibility & Hydraulics Results
- Community Workshops
- ➤ Next Steps

Why Here?

NH WIId Brook Trout Distribution (1983-2016)
Wild Brook Trout Documented (n=1994)
Wild Brook Trout Not Found (n=2958)

Completed Assessments

o Eastern Brook Trout Joint Venture
o Natural Resource Inventories
o Clean Water Healthy Trout

- Designated River-NHDES
- High need (N=781)and logical next step
- Many partners

Ammonoosuc Watershed

16 Towns 741 Stream Crossings

Stream Crossing Assessments

- Worked with state agencies More focused restoration efforts
- Data Collection AOP, Geomorphic Compatibility, Hydraulic Capacity
- Fish and other aquatics are good for road integrity—<u>Transportation for All</u>

Aquatic Organism Passage

www.factzoo.com

Wildlife Action Plan

~50% Greatest Conservation Need fish spp. utilize river/stream corridors

- Alewife
- American Brook Lamprey
- American Eel
- American Shad
- Blueback Herring
- Brook Trout
- Rainbow Smelt
- Sea Lamprey

High Quality Habitat

Water Quality

Large Wood

Riparian Vegetation

Thermal Refuge

Deep Pools

Structure Diversity

Spawning Grounds

Gravel Substrate

In-Stream Vegetation

Water Velocity

Features of a Good Stream Crossing

- Natural streambed composition
- No change in flow rate and depth (US=DS)
- Properly sized to handle most flows

- Lower short term maintenance, lower community cost
- Increased public safety
- Increased streambank stability and spp sustainability

Ammonoosuc River Watershed Aquatic Organism Passage Results

Thank you PSU student Andrea Lamper March 2017

PSU student Andrea Lamper March 2017

Infrastructure Vulnerability

Stream Works – TU Culvert Model V. 1

Uses crossing characteristics and flow estimates to predict the resilience of a crossing at 2, 10, 25, 50, and 100-year flow events

B_CUBK_03MB_CUB

L06 BPR_02 M MB_MB_MBPR_08 MB_N MB_MBPR_12 Culvert condition For a 10, 25, 50 and 100-year storm events

- Middle Branch
 Culvert location
- Guiventiocation

Hydraulic Model Results:

Ammonoosuc River Watershed 2-Year Flood Impact

Ammonoosuc River Watershed 100-Year Flood Impact

Community Engagement

- Community Champions = 350+ hours!
- Youth Service Learning (64 students)
- Stewardship Ethic
- Successful, Stable Infrastructure and Healthy Habitat

From Data to Action

	GEOMORPHIC_COMPATIBILITY	AOP_STATUS	2 YR	10 YR	25 YR	50 YR	100				
Ì	Mostly Compatible	Reduced AOP	Р	F	F	F	F	A. A. COMPLEX	Printer Color	NAME	
1	Mostly Compatible	Full AOP	Р	Р	Р	Т	F	ROMATSU	DI Cal		STREET &
1	Partially Compatible	No AOP including adult salmonids	Т	F	F	F	F 2000 ///				
	Partially Compatible	No AOP including adult salmonids	Р	Р	Т	F	F		1 2 2 2		
1	Fully Compatible	Full AOP	Р	Р	Р	Р	P			Tell's	A STATE
ļ	Mostly Compatible	Reduced AOP	Р	Т	F	F	F	State Las		and and	
ļ	Mostly Compatible	No AOP including adult salmonids	Р	F	F	F	F	Contraction of the second	Stand Stand	200	and the
j	Fully Compatible	Reduced AOP	Р	Р	Т	F	F	and the state			
3	No GC Screen for bridges/arches	No AOP score for bridges/arches	Р	Р	Р	Р	P				
)	Mostly Incompatible	Reduced AOP	Р	F	F	F	F				
5	Fully Compatible	No AOP including adult salmonids	Р	Р	Т	Т	F			-	
3	Fully Compatible	No AOP including adult salmonids	Р	Р	Р	Р	P	1. 32	N.		
1	Fully Compatible	Reduced AOP	F	F	F	F	F M M	A State Print			
1	Mostly Compatible	Reduced AOP	Р	Р	Т	F	F	The second			
)	Partially Compatible	Reduced AOP	Т	F	F	F	F		Contraction in		
)	Mostly Compatible	Reduced AOP	Р	Р	Р	Р	P		Prof. W		
)	Fully Compatible	Full AOP	Р	Р	Т	Т	F		inter 1	ANP LESS	
3	Unable to Score	No AOP including adult salmonids	F	F	F	F	F	AND	and the second		
}	Mostly Compatible	Full AOP	Т	F	F	F	F		010		
1	Partially Compatible	No AOP including adult salmonids	F	F	F	F	F W W		A .	States -	
1	Mostly Compatible	No AOP including adult salmonids	F	F	F	F	F	S.	A Ch		
3	Mostly Incompatible	No AOP including adult salmonids	Р	Р	Р	Р	T		Stan and		-
1	Mostly Compatible	No AOP including adult salmonids	Р	Р	Т	F	F	the second	1 - in	The .	
	Mostly Compatible	No AOP including adult salmonids	Р	F	F	F	FZAR		and the second		. C
3	Mostly Compatible	No AOP including adult salmonids	Р	Т	F	F	F		The second second	- Mark	S. S. S. L.
1	No GC Screen for bridges/arches	No AOP score for bridges/arches	#N/A	#N/A	#N/A	#N/A	#N/	and the second	A ASSAUT A	a the way	a martin
1	Partially Compatible	No AOP including adult salmonide	D	D	D	D	D		Contraction of the local distance of the	Start Marrie Taken	"Aller and

Community Workshops

Challenges

- * Limited capacity
- Long process
- Competing needs
- * Misperceptions
- Long-term investment
- Need more champion recruits
- Systems thinking

Design

- Participatory
- Interpret data
- Identify actions and individuals
- Demystify process
- Foster collective action
- * Connect with resources

Opportunities

- Lessons learned are transferable
- * Replicable
- * Build on momentum
- Resources are available
- * Collaboration

Community Workshops

Ge

Nı

Data Interpretation:

- Basic stream and river function
- Results from 2016 Ammonoosuc River Stream Crossing Assessment Project Report
- Prioritize and identify potential restoration sites

The focus will be to enable participants to understand model variables and results of the assessment, evaluate vulnerable town infrastructure, and prioritize to initiate restoration projects.

eomorphic	AOP	Other					
mber of culverts	Culvert outlet invert type	Crossing type					
ostream dimensions	Outlet drop (ft)	Material					
stream bankfull width	Downstream pool present	Condition					
gle of stream flow approaching	Downstream pool	Water depth					
	entrance depth						
llvert slope compared with	Water depth in culvert at	Upstream					
annel slope	outlet (ft)	waterbody					
stream bed deposition	Number of culverts at	Dan					
	crossing						
stream deposits taller than 0.5 👘	Structure	er ap					
nkfull height	pa ammonoosuc Riv	oject (ARSCAL)					
eeper Segment within 1/3 mile	SC Anna Assessment						
stream	Stream Summary Report: Evaluation	an anothe State University					
wnstream bed scour	Sed Prelimination Prepared by: Prepared by: Prime Fish & Grant Deput	arturent / Piljane Geological Survey Hampshire Geological					
dermining the structure	Stru						
wnstream bank heights are							
nificantly taller than upstream							
nks		2017					
ostream bank erosion	Marte						
wnstream bank erosion	Special The Outline	I Thanks 10: Ammenous River To a, Ammenous Trout Unimited Corrdinator, Trout University Corrdinator, Mark University					
ostream bank armoring	Art Greene & Nor-Prob Colin Levron, Prob Realing Levron, Dea M	Manager, 198 Fich & Game					
wnstream bank armoring	Dueste Tumor	or this project provided by:					
	Futor Singerion & En	hand with State					
		B) Ply Built Sift					
		ZAP					

Long-Term Restoration Strategy

Stream Crossing Assessment Project

Embrace a Stream

UPPER CONNECTICUT RIVER

HON CAN VE THE P YOU? I WHAT WE HE UP TO

REEN INFRASTRUCTURE PROJECTS

ITIGATION AND ENHANCEMENT Connectivity of Streams & Wetland

Develop strategies that avoid Upper Connecticut Mitigation and Enhancement unnecessary expenses

 Benefits w/ pre-planning and proactive restorations

Project financing, grants and mitigation

Develop "working groups"

Presentations from engineers, state permit agents, and potential funding agencies

Outcome:

Slide Brook Culvert Restoration ~ May 2010

Pre-replacement – looking upstream ~ 2006

Post-replacement – looking upstream ~ 2010

Working with towns to prioritize road crossings that are important for all users.

A Balanced "Ecosystem" Reduces Vulnerability!

- Increase habitat connectivity
- Improve habitat quality and flood resilience
- Support species diversity & productivity

ARSCAP Project Team

Rachelle Lyons Plymouth State University Project Manager <u>rllyons@plymouth.edu</u>

Center for Business & Community Partnerships

Dianne Timmins NH Fish and Game Data Manager dianne.timmins@wildlife.nh.gov

Colin Lawson Trout Unlimited National Project Supervisor <u>clawson@tu.org</u>

Tara Bamford Senior Community Planner tbamford@ncc.org

Art Greene Ammonoosuc Chapter Trout Unlimited Volunteer Coordinator <u>afgreene@roadrunner.com</u>