Restoring flow in the Beebe River: Implications for Eastern brook trout

Introduction

The Beebe River watershed (Campton & Sandwich, NH) is home to wild, headwater populations of Eastern brook trout (Salvelinus fontinalis). Of the seven tributaries, five are impacted by undersized road crossings (NHFGD 2014).

- Brook trout require cool, clean water and their presence often suggests good water quality (Kanno et al. 2014)
- Movement upstream occurs when water temperature exceeds thermal tolerance (20°C) and during spawning (Curry et al. 2002; Davis et al. 2015)
- Temperature and/or physical barriers can impact movement and genetic diversity may be reduced resulting in subpopulations at risk of extirpation (Warren Jr. & Pardew 1998; Kondratieff & Myrick 2006; Postle-Jaffers et al. 2009)
- In small populations, genetic impacts may be amplified when subpopulations become isolated and chances of inbreeding increase (Hudy et al. 2010; Kanno et al. 2014)
- Little data exists as to the genetic impacts of stream-crossing structures, like culverts, on brook trout (Pierbert et al. 2000; Torderot et al. 2014; Felson et al. 2015)

Research Objectives

1. Assess population demographics of brook trout
2. Track brook trout movement over time and space
3. Document impact of human and natural barriers on population genetics of brook trout

Methods

Population demographics
- Length, mass, scale samples:
 - a) Scale samples used to age fish
 - b) Growth calculated by mark-recapture length/mass change (7/23, 8/5 - 10/7/2016)

Fish movement
- Implanted PIT tags for:
 - a) Mark and recapture via e-fishing
 - b) Stationary antennae detections
 - c) Mean movement calculated by mark-recapture (7/23, 8/5 - 10/7/2016)

Fish genetics
- Fin clips:
 - a) Sequence 12 microsatellites identified by King et al. (2012)
 - b) Will be sequenced & analyzed in summer 2017

Results

Population demographics

Age structure (Figure 1)
- Age distribution GR3 & GR4 (with human impacts) differs from ECR1 (without)
- Highest fish abundance in the non-impacted stream, Tributary 1- ECR1 (N = 167)

Discussion

- Differences in age distributions = threat of subpopulation extinction in GR3 and GR4 (Fig 1)(Ohend et al. 2008)
- Greatest % body mass increase occurred in the least impacted stream, suggesting most food availability/least stress (Fig 2)
- Greatest movement trend occurring in the most impacted tributary, suggesting unfavorable conditions (Fig 3)
- We predict culvert removal will increase fish movement into and within tributaries, providing enhanced access to thermal refuge and spawning habitat, resulting in increased genetic variation

Acknowledgements

The Conservation Fund, NH Fish & Game Dept., PSU SRAC and PSU Biology Dept. for funding and Trout Unlimited: Pemigewasset Chapter for volunteer hours on the project.